

Sequence variation in the full genome of PMCV

sampled from field outbreaks of CMS

Aase B. Mikalsen¹, Sunil K. Mor², Vikash Singh² and Øystein Evensen¹

- 1) Norwegian University of Life Sciences, Oslo
- 2) University of Minnesota, St. Paul, Minnesota

Figures from Sandlund et al "Comparative molecular characterization of novel and known piscine toti-like viruses" – Submitted, March 2021

Background **Genetic variation - PMCV**

- Norwegian strains are highly similar¹
 - Most divergent shares 97,7% nt identity
 - Capsid 99,3% identical amino acids
 - ORF3-protein 97,7% identical amino acids
- «Some relation» between phylogeny and geographical origin, but also contradictions

A N = 2-3

- Similar findings for Irish strains²
 - Most divergent among Norwegian and Irish strains shares 97,7% nt identity

Background Genetic variation – PMCV ORF3-encoded protein

- One outbreak consists of/results in several virus variants and ORF3 equal to ALV-708 strain¹ is usually represented²
 - Within one disease case
 - Up to seven different variants present between individuals
 - Variants different from ALV-708 is never found in more than one outbreak
 - The position with change is usually exclusive to individual cases
 - Only 4 positions with change in more than one outbreak

PMCV 25a-MR/09	JQ728783	D/M															L							,			,		
PMCV 25b-MR/09	JQ728784	D/M		-					-				,		-					-		G				G		-	
PMCV 25c-MR/09	JQ728785	D/M	-																-			-							L
PMCV 25d-MR/09	JQ728786	D/M					К	E			0	Q.						т	-		А								-
PMCV 25e-MR/09	JQ728787	D/M		-																-									
PMCV 25f-MR/09	JQ728788	D/M															L					-							
PMCV 25g-MR/09	JQ728789	D/M						-	Т								L		-										
PMCV 25h-MR/09	JQ728790	D/M	-												-					-		G				G			
PMCV 25i-MR/09	JQ728791	D/M		-	R	-			V	C	10	Q.			-		L			-	Т	-						-	
PMCV 25j-MR/09	JQ728792	D/M	-		R				v	C	2 (Q.					L		-		Т	-						-	
PMCV 25k-MR/09	JQ728793	D/M			R				v	C	2 (ς.					L		-		Т								
PMCV 25I-MR/09	JQ728794	D/M		-													L			-									
PMCV 25m-MR/09	JQ728795	D/M															L					-							
PMCV 25n-MR/09	JQ728796	D/M																	-	-		G				G		-	
PMCV 25o-MR/09	JQ728797	н	D	1				-			-			-		R				-			-	М	١.	-			
PMCV 25p-MR/09	JQ728798	н		-	R	-			V	0	10	ς.			-		L			-	1							-	
PMCV 25q-MR/09	JQ728799	н										-								-		-							
PMCV 25r-MR/09	JQ728800	н															L												
PMCV 25s-MR/09	JQ728801	н			R				v	C	2 0	ς.					L				I.								

F/58/12 #11 [†]						4	
F/58/12 #12 [†]		 Q					
F/58/12 #13 [†]							
F/58/12 #14 [†]	к		v	Q	Q	т	

Haugland 2011 Wiik-Nielsen 2012 and results from FHF-project 901179 (manuscript in preparation)

Mat & Met Sequence studies of PMCV full genome

- Full genome sequence only available for one isolate: PMCV ALV708¹
 - ORF1/RdRp: 16 full ORF + 21 partial
 - ORF2/Coat: 1 full ORF from ALV708
 - ORF3: 28 full ORF + 35 partial
 - UTRs: Only available from PMCV ALV708

Case	Sampling	Geographic location	# individuals
А	05/04/11	Nordland	5
В	13/06/17	Frøya, Trøndelag	6
С	27/06/17	Dønna, Nordland	6
D1	28/08/17	Hitra, Trøndelag	5
D2	05/12/17	Hitra, Trøndelag	8
E	05/08/17	Jondal, Hordaland/Vestland	4
F	19/09/17	Kristiansund, Møre og Romsdal	6
G	04/01/18	Harstad, Troms og Finnmark	5
Н	17/12/18	Frøya, Trøndelag	12

1) Haugland 2011

Results Sequence studies of PMCV full genome

- Near full genome sequence was achieved for samples from 33 individuals
 - PMCV strains are highly similar over the full-length 6688nt genome
 - Most divergent isolates share 99,2% nts
 - One outbreak usually includes several strains

Results

Sequence studies of PMCV full genome – most divergent strains

• Most divergent strains by nucleotides and amino acid sequence on each ORF, UTR and encoded proteins:

- 100% identical strains were found in individuals from same outbreak, but never from different outbreaks
- The strains with highest identity between two outbreaks shared 99,8% nts

Summary Sequence studies of PMCV full genome

- PMCV strains are highly similar over the full-length 6688nt genome
 - Highest variability in ORF3-encoded protein
- One outbreak usually includes several strains why?
 - The variability among individuals probably reflects variability in each individual
 - One strain infects the fish and mutates rapidly throughout the infection and results in a cloud of variants?
 - A cloud of variants infects the fish and the most fit strain(s) result in disease?
 - Multiple infection by several strains?
- Sequencing of PMCV is not possible to use for tracking virus to study origin of infection or other epidemiological aspects (geographical relation, historical etc.)

Questions?

Acknowledgements:

- Håkon Torsvik and Sandra Radunovic, Aquamedicine unit, for technical help with field sampling and sampleprep and PCR
- Turhan Markussen, Aquamedicine unit, NMBU, for phylogenetic analyses
- Liv Sandlund and Stian Nylund, Pharmaq analytiq, and Nick Phelps and Soumesh Padhi, University of Minnesota, for collaboration on piscine toti-like viruses
- Funding
 - Norwegian centennial chair (NOCC) project «Comparative studies of genetic variability and in vitro virulence comparison between the piscine toti-like viruses found in Norwegian Atlantic salmon and golden shiner from Minnesota", 2018-2020
 - FHF project 901179 "CMS markører for opptreden av klinisk sykdom»

