A web-based application simulating the spread PD after introduction in a naive population

Background, model framework and use

Lars Qviller Anja B. Kristoffersen Magne Aldrin Britt Bang Jensen

Contents lists available at ScienceDirect

Preventive Veterinary Medicine

Space-time modelling of the spread of pancreas disease (PD) within and between Norwegian marine salmonid farms

M. Aldrin^{a,c,*}, R.B. Huseby^a, P.A. Jansen^b

- ^a Norwegian Computing Center, P.O. Box 114, Blindern, N-0314 Oslo, Norway
- ^b Norwegian Veterinary Institute, P.O. Box 750, Sentrum N-0106 Oslo, Norway
- ^c Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, N-0317 Oslo, Norway

What is a model?

- A simplified view of reality
- Include what is important to understand the system,
- Exclude unnecessary details
- Exclude the things we do not understand, or bypass it by the use of statistical associations

A very simplified reality, expressed as a mathematical relationship

Perfekt harmoni, form og funksjon.

OCTAVIA STASJONSVOGN

FAMILIENS FAVORITT

Plass, komfort og ny teknologi i én og samme pakke.

Fra 286 300 kr

CO₂ Fra 103 g/km Emission of CO2

Fra 3,9 I/100km Average consumption

An experience based model

Is the model good for use?

Compare the model performance to observations from the real world

The PD model

- Experience based/empirical
 - The authors have used data to understand the relationships between different factors and the risk of infection
 - Predictive, scenario simulations

The PD model

- An infected site produce virus
 - The amount depends on the number of fish/biomass at the site
- A susceptible site receive virus
 - The susceptibility depends on the number of fish/biomass at the site

Seaway distance

The PD model

- An infection product
 - The a on the fish/l

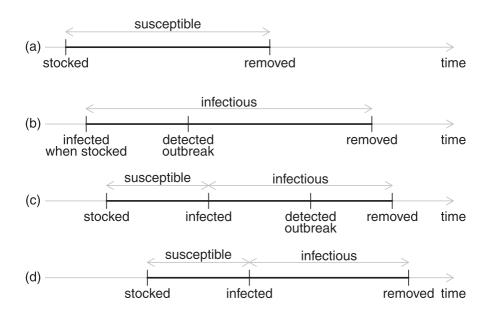
But also other factors like seasonal dynamics, temperature, shared company, etc

Also includes the internal development

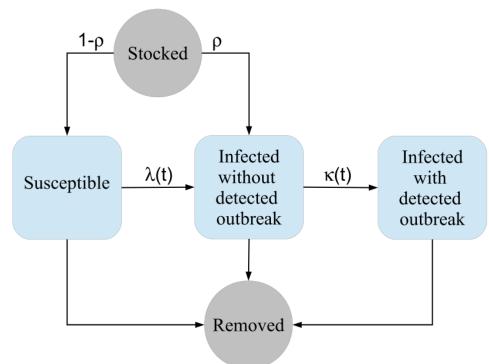
ecieve

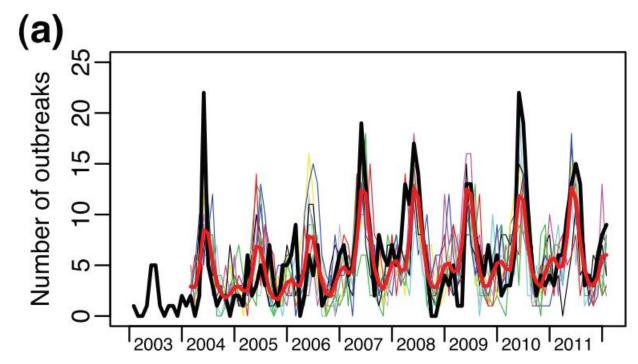
number at the site

The PD model, multiple sites


 May be infected from several sites Calculate infectious contact with all surrounding sites

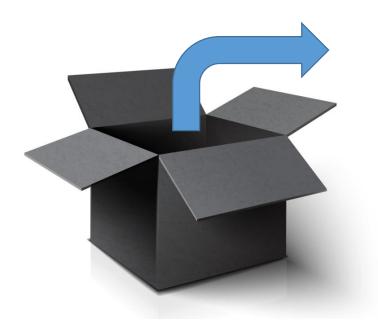
Seaway distance


SIR model


SIR model

Validation

The application, data input

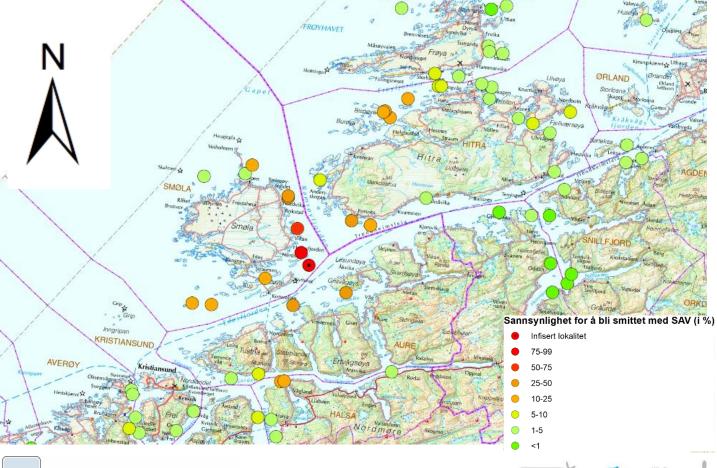

Whether a site gets PD

(The rest of the information will be included in the tool)

The application, output

Probability of infection in surrounding sites, and uncertainty

Extrapolate the development of the disease in the area over time.


The application, output

- Development of the disease 6 months into the future.
- Will the disease establish in the area?
- Different scenarios

Thanks

