Deformities in Atlantic salmon Field and experimental observations (2016-2018)

TriNations 2019 Ole Høstmark

Spinal deformites in Atlantic salmon. 20 different types/combinations described in x-rays

Aquaculture 295 (2009) 6-14

Towards a classification and an understanding of developmental relationships of vertebral body malformations in Atlantic salmon (*Salmo salar* L.)

P. Eckhard Witten ^{a,*}, Laura Gil-Martens ^b, Ann Huysseune ^a, Harald Takle ^{c,d}, Kirsti Hjelde ^e

Type 1 decreased interventebral space		Type 10 widely spaced and undersized	
Type 2 homogeneous compression		Type 11 pronounced biconceive	
Type 3 compression and reduced intervertebral space	MRHÅHRI	Type 12 hyper-radiodense	няняянны
Type 4 compression without X-structure	er som	Type 13 hyper-radiodense with flat end plates	окказалины
Type 5 one-sided compression	NANXKALA)	Type 14, 15, 16 kordosis, kyphosis, scoliosis	00000000000000000000000000000000000000
Type 6 compression and fusion	HARABARA	Type 17 vertically shifted	(RXXXX
Type 7 complete fusion		Type 18 irregular internal structures	
Type 8 tusion centre	NAN ARKA	Type 19 internal dorsal or ventral shift	*****
Type 9	alalalalalalalala	Type 20 severe multiple matternations	

Deformities in Atlantic salmon, Field and experimental observations (2016-2018)

- A. Field observations
- **B.** Experimental trial
- C. «Big Data» based on three generations

There are different types of spinal deformities (evident by X ray) that can result in connective tissue/cartilage development. Examples 3 main types

Cross stich

Platyspondyly (some risks described in literature)

Fusions (some risks described in literature)

The Science of Healthier Animals®

Farm cases: Fish population (farmers choice) X-ray assessment at slaughter (n=30-60)

Farm	Vaccine (all 6 comp + PD)	Prevalence fish with X-ray findings	Fusions	Platyspondyly	X-stich
1 S1-16	7-component In use since 2015	12%	10%	0%	2%
2A S0-16	7-component In use since 2015	83% *	47%	63%	7%
2B S0-16	7-component In use since 2015	43% *	13%	30%	7%
3A S1-17	7-component In use since 2015	3%	3%	0%	0%
3B S1-17	6+1 combi In use since 2008	43%	17%	0%	27%
4A S1-17	7-component In use since 2015	10%	10%	0%	0%
4B S1-17	6+1 combi In use since 2008	0%	0%**	0%	0%

- *Several fish had combination of more than one deformity type
- **Deviates from 10% prevalence found at earlier samplings,

Spinal deformities, controlled experiment

Design:

- S0 production cycle at research facility (Q3 2017- Q4 2018)
- Groups of fish vaccinated with different experimental and commercial multivalent vaccines vs unvaccinated
- Groups kept together within 2 x 3 replicate cages feed on std basic feed, one triplicate received (in pulses) feed added immune stimulant (B-glucan), while one triplicate receive pulses of identically made feed without immune stimulant.
- X-ray assessment over time (n=30-60)

X-ray picture: VetScan AS

Spinal deformities, controlled experiment

Key finding:

- All the three main types of spinal deformities evident
- Platyspondyly and Fusion evident in all groups including unvaccinated
- Cross stich pathology only seen on vaccinated fish when vaccination included PD, independent of vaccine producer and modifications made on experimental vaccines.
- Cross stich pathology first evident 2,5 months before slaughter. Platyspondyly and Fusions evident earlier.
- No effect of pulse feeding with feed added B-glucan was evident (any feed conclusion is valid for the single ingredient as tested here)

Spinal deformity, key observations field and experimental combined

- Various spinal deformities appears to be present in increasing prevalence compared to 4-6 years ago.
- Different deformity types are typically seen in a mix within the same population with big variation in which one predominates.
- Highly variable prevalence and severity between and within farms
- Cross-stich deformity have been observed on fish vaccinated with 4 different vaccines from two producers, 3 includes PD.
- Two of the vaccines have been in extensive use (>100mill doses annually) since 2008, hence long before deformity problems «reappeared» to current level.
- Deformity observations appears much more prevalent in Norway vs UK where the same or similar vaccines are in use.

It appears clear that a combination of factors are needed for spinal deformities to develop.

Spinal deformities, can risk factors be identified by "big data"?

- When ever a potential side effect of a veterinary medicinal products (like a vaccine) is <u>suspected</u> it's the responsibility of relevant health personnel to report this to the producer of the medicinal product or the competent national authority (in Norway NoMA).
- MSD AH has diligently done this for cases were <u>cartilage/connective tissue</u> observations at slaughter were reported as suspected side effect.

MSD-AH have used such cartilage/connective tissue case reports vs overall use of MSD AH products to high level trend "where" in salmon production cartilage/connective tissue appears.

Where in salmon production do spinal deformities (evident by cartilage/connective tissue at slaughter) appear?

Total use of MSD PD vaccine 2015-2016 (currently slaughtered fish)					
Generation	Number of farms	Number of fish			
S0-2015	59	32 million			
S1-2016	44	28 million			
S0-2016	64	64 million			

<u>Cartilage/connective tissue reports at slaughter (=mix of spinal deformities)</u>

- By yes/no majority is no
- Some producers overrepresented
- Overall approximately 3-4 fold higher probability of yes for S0 vs S1
- If yes typically more severe on S0
- Distribution of different types of spinal deformities within the data is unknown

Summary spinal deformity observations

Key findings:

- In Norway various spinal deformities that can result in cartilage/connective tissue at slaughter appears to be present in increasing prevalence compared to 4-6 years ago.
- Higher prevalence and severity on S0 fish
- Huge difference in severity and deformity type distribution between and within farms
- Within S0 produced fish some producers are overrepresented
- A combination of factors appears needed for spinal deformities to develop.

Key questions:

- Have we reintroduced deformity risks known from "old days"?
- Have we introduced new risks resulting in the same?
- What are the production parameters that results in the big variation?
- Can we use the big variation seen to reveal risk factors by computer based big Data approach on production variables?

THANK YOU FOR YOUR ATTENTION

AND THANKS TO THE COLLABORATING PARTNERS

HAVFORSKNINGSINSTITUTTET

The involved farming companies

VetScan AS

CT & MRI Diagnostics

