DNA vaccination against SPDV: suppression of viraemia, protection, and individual monitoring

Catherine Collins, Katherine Lester, Jorge Del Pozo, Bertrand Collet

marine scotland science

Targeted disease prophylaxis in European fish farming

Establish a generic knowledge-base for rational development of next generation fish vaccines and their application: efficacy, safety and delivery route.

- develop improved vaccine for SPDV
- understand the basis for DNA vaccine protection/efficacy
- improve challenge model for SPDV
- improve sampling/monitoring methodologies

Generation of DNA Vaccine

SPDV DNA vaccine

Subtype 1
Structural proteins (all)

Placebo

In vitro verification of DNA vaccine expression

Genetically engineered stable CHSE cell line (CHSE-ppG).

- RNA transcription of the SPDV DNA vaccine construct confirmed
- Protein expression of SPDV polyprotein confirmed (EGFP as marker)
- Cleavage of SPDV polyprotein indicated (EGFP-capsid protein in cytoplasm)

Visualisation of cytoplasmic mEGFP-capsid fusion protein in CHSE-ppG

In vivo verification of DNA vaccine expression

Vaccination – (no challenge)

50g parr salmon; i.m. injection; samples (n=6) at 3, 7, 11, (smoltification) 46 dpv.

Site of ppG intramuscular injection

- transcription of ppG observed
- induction of IFN type 1 in ppG group
- increase in CD8 marker in ppG group

Non lethal, same animal, sampling

Individual tagging (PIT)

PIT tag inserted into abdominal cavity

Repeated blood samples 1 µl/g fish every 4 days

Syringe 0.3X12.7mm

RTG-P1 stable cell line: reporter cell-based assay for SPDV viraemia and Ab neutralisation test

Rainbow trout genome

Promoter

mx1 gene

Promoter region incorporated into plasmid, upstream of luciferase gene.

- modified plasmid incorporated into reporter cell line
- when cell line exposed to virus, promoter is activated and in turn activates luciferase
- luciferase breaks down luciferin added to cells in assay
- break down of luciferin gives off luminescence
- luminescence indicates presence or replicating virus
- level of luminescence related to virus load

Plasmid producing luciferase under the control of the rainbow trout *mx1* gene promoter

Genetically engineered stable cell line RTG-P1 ATCC CRL-2829

Assessment of SPDV DNA vaccine efficacy

Vir	aemi	a
Αll	time	points

RTG-P1 cells were incubated for 14 days @ 14°C with individual plasma samples.

Luciferase activity was measured as estimation of virus levels.

QPCRDPI 28/DPV 77

TaqMan quantitative PCR for nsP1 (Hodneland & Endresen 2006).

Pooled muscle and heart tissue homogenate.

Histopathology
DPI 28/DPV 77

	Tissue	Score	Description							
		0	Normal appearance							
		1	Focal myocardial degeneration ± inflammation (<7 fibres affected)							
	Heart	2	Focal myocardial degeneration ± inflammation (<15% of heart affected)							
		3	Multifocal myocardial degeneration ± inflammation (>15 & <50% of heart affected)							
		4	Severe diffuse myocardial degeneration \pm inflammation (<50% of heart affected)							
		R	Repair							
	Red & White skeletal muscle	0	Normal appearance							
		1	Focal myocytic degeneration ± inflammation							
		2	Multifocal myocytic degeneration ± inflammation							
		3	Severe diffuse myocytic degeneration ± inflammation							
		R	Repair Graham et al., J. Fish Diseases 2011, 34, 273-286							

Ab neutralisation DPI 28/DPV 77

RTG-P1 cells were incubated for 7 days @ 14°C with SPDV in the presence or absence of individual plasma samples.

Luciferase activity was measured and the neutralisation levels were estimated.

Group	Rela	tive v	virae	emia le	evels d	ays	post	infectio	SPDV ETA Heart score (h & m)	Inflamma tion	Muscle score	Relative Ab level			
	0	4		8	12		16	20	24	28	(11 & 111)				
75											ND	0		0	
Uninfected Control											ND	0		0	
ninfecte Control											ND	0		0	
ΓΩ											ND	0		0	
											ND	0		0	
											ND	1	ı	0	
											259	2	I	0	
											9	2	I	0	
											114	0		0	
ion											188	1	I	0	
Placebo + infection											46	3	I	0	
ij											343	2	I	0	
0											71	2	I	0	
cek											370	2	I	0	
Pla															
											6511	3	I	0	
											4254	1	ı	0	
											245	2	I	0	
											ND	1	NI	0	
											ND	0		0	
											ND	0		0	
											ND	0		0	
ion											ND	0		0	
ect											ND	0		0	
in											ND	0		0	
Vaccine + infection											ND	0		0	
Scin											ND	1	NI	0	
Vac											ND	0		0	
											ND	0		0	
											ND	1	NI	0	
											ND	1	NI	1	
											ND	1	NI	0	

I: inflammatory; NI: non-inflammatory; ND: not detected

Differential Infection Dynamics & Response in Challenged Fish

Days post challenge with SPDV

DNA vaccine safety

recommends marketing authorisation for CLYNAV: Salmon pancreas disease vaccine (recombinant DNA plasmid)

Discussion with EFSA in 2016

- very little data on which to consider safety
- main concern is integration of full plasmid or plasmid fragments into fish genome
- previous data did not sufficiently address plasmid fragments
 - all additional data welcomed to support decisions

Analysis of Integration Events

Long/circular PCR to detect remaining intact free plasmid

Targeted enrichment of integrated plasmid

DNA: site of DNA vaccination

Probe hybridisation Bead capture, Post capture amplification

Sequencing illumina/PACBIO

Limit of detection of method

Stable cell lines: CHSE-ppG

- 100% ppG plasmid integration
- cell DNA sheared to generate small fragments – plasmid fragments
- used to spike host DNA low-high

Summary

DNA Vaccine

(within the conditions tested)

Challenge

Sampling

Basis for Protection

- Complete suppression of viraemia due to DNA vaccine
 - No propagation of virus detected in target organs
 - No myocardial degeneration nor inflammation in heart tissue
- Sea water bath immersion challenge (more natural/controlled)
- Non-lethal sampling highligths differences in infection dynamics/response between individual fish
 - better interpretation of findings/predicted outcome
 - selection of fish for response type
- Evidence for IFN type 1 and CD8 response to vaccine
 - o further gene analysis ongoing
- Ab involvement in protection uncertain
 - analyse earlier plasma samples from ppG and placebo gps

Acknowledgements

Aquarium staff

Mark Paterson

Statistical advice

Malcolm Hall

Assistance with sampling and sample processing

Louise Feehan Mark Fordyce Carina Duarte

Assistance with sample analysis

Mercedes Reguera

Thank you for listening

