#### The Economics of Pancreas Disease Management

Trination meeting, Aberdeen, 12<sup>th</sup> October 2016 Arnfinn Aunsmo, DVM, PhD COO AquaGen Norway



#### Outbreaks of viral diseases in Norwegian salmonid aquaculture 1986 - 2015





#### Development of PD in Norway



Figure 2: A) Annual PD cases in Norway from 1995 to 2015. B) Spread of PD during 2002-2014. Source: Norwegian Veterinary Institute (NVI) (Bang Jensen et al., 2016).



#### Pancreas Disease (SAV) transmssion -in Norway

- Horizontal transmission in sea is the main transmission route (Kristoffersen at al. 2009, Kongtorp et al. 2010, Jansen et al. 2010)
  - Network contact, either shared virus or shared risks
- Transport of infected smolt
  - Into naive areas
  - Crossing the disease frontiers



#### The cost of disease

Direct effects (costs)

- Output losses (biological losses)
- Extraordinary costs
- Costs of treatment
- Costs of prevention

Indirect effects (hidden costs)

- Impaired human health
- Reduced animal welfare
- Environmental effects
- Effects on the market
- Other effects on society

Source: After Bennett 2003, Bennett and Ijpelaar 2005



# The biologic production-loss model (bPLM)



#### **Biological losses Pancreas Disease**



#### The cost of PD

- Ruane *et al.* 2008
  - Irish Industry (2003-2004 prod. period)
  - € 12mill. loss of profit, €35 mill loss of turnover
- Aunsmo *et al.* 2010
  - Expert opinions on 74 outbreaks 2004 -2007, endemic SAV3 area
  - Cost of PD NOK 15,6 mill. per 500 000 smolt
- Pettersen *et al.* 2015
  - Expert opinions on 138 outbreaks 2009 2013, endemic SAV3 area
  - Cost of PD Nok 55,4 mill per 1000 000 smolt

#### Table 6

The simulated mean values (5th, 50th, 95th percentiles) of the direct costs of a Pancreas disease outbreak occurring 9 months (average weight 1.91 kg) after sea transfer on a salmon farm with 1000 000 smolts (NOK million) under 2013 sales prices.

|                          | Mean (5th, 50th, 95th)  | Proportion (%) |
|--------------------------|-------------------------|----------------|
| <b>Biological losses</b> | 43.8 (27.0, 44.3, 60.3) | 79.1           |
| Cost of treatment        | 0.3 (0.0, 0.3, 0.7)     | 0.5            |
| Cost of prevention       | 5.0 (2.9, 5.0, 7.0)     | 9.0            |
| Other additional costs   | 6.3 (3.8, 6.2, 9.1)     | 11.4           |
| Insurance payout         | 0(0.0, 0.0, 0.0)        | 0.0            |
| Direct costs of PD       | 55.4 (38.0, 55.8, 72.4) | 100            |

J.M. Pettersen et al. / Preventive Veterinary Medicine 121 (2015) 314-324



## Approach to disease control

#### Strategy

- 1. No strategy
  - Management without a strategy, minimize losses
  - CMS
- 2. Control of disease
  - "Endemic diseases"
  - IPN

- 3. Eradication
  - Remove infectious agent
    - ISA (Scotland)

#### Level of intervention

- 1. By the single producer
- 2. In the Management Areas
- 3. Industry level
- 4. Governmental level





Aunsmo A. (2009). - Health related losses in sea farmed Atlantic salmon - quantification, risk factors and economic impact.



#### "The equimarginal principle"

"The returns from a scarce or limited resource are maximized when the input is allocated to its most profitable uses in such a way that the return from the last unit of resources is not only equal or higher than the costs of the last unit of resource, but also the same in <u>each of the alternative uses</u>"

Dijkhuizen and Morris 1997



#### Scarce resources

- Resources are always scarce!
- Most profitable use of resources!
  - Challenging!
- Prioritization is necessary
  - In Industry
  - In Research
  - In Governmental disease control



#### The use of R&D in disease control





#### Cost-benefit of PD control

- Need to know the cost
- Need to know the benefits
- At the different levels of control
  - 1. By the single producer
  - 2. In the Management Areas
  - 3. Industry level
  - 4. Governmental level
- Effect on the market may be reflected in price



#### «Partial or full model»?

The best part about creating a symphony was beeing able to see the whole of it at a single glance in my mind Mozart



#### Early harvest (by the single producer)

- Pettersen et al. 2015 •
  - «Disease triggered early harvest strategy»
- Avoid PD outbreak (SAV3) •
- Screen and harvest before disease outbreak and biological losses •
- Break even at ~3,2 kg round weight ٠
- Optimization for the single producer •



J.M. Pettersen et al. / Preventive Veterinary Medicine 121 (2015) 314–324

Fig. 2. The marginal benefit from performing a prescheduled harvest (scenario 1) in NOK million (5% and 95% percentiles), estimated for harvest weights between 1.2 and 5.5 kg.



320

#### Control in Management Areas

- Pettersen et al. 2016
- Shared strategy in PD-endemic MA
  - Optimize for the MA
- Cost of disease from Pettersen *et al.* 2015
- Based on an epidemiological model for spread of PD (Aldrin *et al.* 2015)
- Simulations in the period 2011 -2014
- 4 scenarios
  - A. Cohorts removed on the day prior to clinical outbreak
  - B. Cohorts removed if harvest is beneficial for the single cohort
  - C. Cohorts removed 30 days post infection
  - D. Cohorts removed 30 days post clinical disease outbreak
- Compliance levels included





#### Sensitivity

- Epidemiological model for disease spread
- Baseline scenario
- Sales price



#### PD disease frontiers -Industry or national level

- Two PD frontiers in Norway
  - SAV2 and SAV3
  - Virus spill over
- Strategy; Stamp out outbreaks north of the frontier? (relocate)
- Who pays to maintain the disease frontier?
  - Infected farms north of the frontier?
- Who rides free?
  - All the rest
- Who authorize stamp out and Figure 2: A) Annual PD cases in Norway from 1995 to 2015. B) Spread of PD during 200 Source: Norwegian Veterinary Institute (NVI) (Bang Jensen et al., 2016). maintain the frontier?
  - Single producers?
  - Industry?
  - Food Safety Authority?





# Benefit of the frontier?stamp out strategyor become endemic

- SAV2 was introduced into Mid Norway in 2010 and 2011
- Several outbreaks
  - Stamp out or become endemic?
- Estimated the cost for an average site in the region for three different scenarios (A. Aunsmo 2011):

| Scenario                                       | Cost PD SAV2 (NOK)      | Benefit vs. scenario 1 |
|------------------------------------------------|-------------------------|------------------------|
| 1) PD SAV 2 endemic, 50% of sites with outbrak | -13,2 mill              |                        |
| 2) PD SAV2 exotic, 10%<br>outbrekas            | -8,5 mill               | + 4,7 mill             |
| 3) PD SAV2 exotic, 20% outbreaks               | -15,7 mill <sup>1</sup> | -2,5 mill              |

- All industry north of the region rides free!
- Not included in the benefits of stamping out vs. becoming endemic

# Vaccination, functional feed and improved genetics.

- Generally a lack of field studies documenting effect
  - Especially on cost effectiveness
- Often reported as significant findings in biological studies
  - Laboratory trials, field trials more rarely
  - Significant findings reported, but P-values is also an effect of n!
  - Increased sampling improve on the P-value, but not the benefit
- Wee need good effect data
  - Independent?
- Are the resources used in the most cost effective way?
  - "also the in each of the alternative uses"?



#### Vaccination

- Bang Jensen *et al.* 2012
  - 198 cohorts at 170 sites, 111 developed PD (2007 -2009)
  - 123 cohorts vaccinated, 59 developed PD
  - Reduced odds for PD outbreaks if vaccinated with 3x vs unvaccinated fish
  - Reduced cumulative mortality and reduced discarded fish

Table 3. Salmo salar. Summary of descriptive statistics for the 4 response variables used to analyse production loss for nonvaccinated and vaccinated cohorts. The results of single variable logistic regressions are summarised by p-value

| Risk factor variables | Non-vaccinated cohorts |           | Vaccinated cohorts |           | р       |
|-----------------------|------------------------|-----------|--------------------|-----------|---------|
|                       | Mean ± SD              | 90% range | Mean ± SD          | 90% range | -       |
| Cumulative mortality  | $22.5 \pm 12.6$        | 4.2-43.2  | $15 \pm 11.9$      | 2.7-39.9  | < 0.001 |
| Growth rate           | $0.72 \pm 0.11$        | 0.58-0.83 | $0.75 \pm 0.1$     | 0.60-0.89 | 0.036   |
| Feed factor           | $1.18 \pm 0.07$        | 1.08-1.30 | $1.19 \pm 0.07$    | 1.09-1.32 | 0.36    |
| Discarded             | $2.74 \pm 2.71$        | 0.60-7.50 | $1.28 \pm 1.43$    | 0.10-3.70 | < 0.001 |



## Externalities, disease frontiers and free riders

- **Externality** is the cost or benefit that affects a party who did not choose to incur that cost or benefit. SAV transmission between farms with subsequent PD is such an externality.
- We can **Internalize** an externality, so that costs and benefits will affect mainly parties who choose to incur them.
- Compartmentalization can not substitute Disease Outbreak Management (DOM)
  - Virus will spill over frontiers or between MAs
  - Stamping out/ early harvest is effective and necessary in maintaining disease frontiers
  - Also cost effective if we can internalize control cost
- But currently; The single fish owner pays and all the rest rides free!
- The principle of "Who benefits pays" should apply



#### Demo model PD Trination meeting

- Modelling cost of PD
- Modelling benefit of PD Control
- What are the main factors?
- Model



#### No single answer...

- Different companies have different costs of disease and thus also benefits
- Salmon price has a large effect on costs of disease and thus also on benefit of control
- Uncertainty in effect of disease and effect of control
- Variation in effect of disease and effect of control



## Summary

- Pancreas Disease is costly, SAV3 especially in Norway!
- Costs of PD and benefit of control can be modelled
- Control will be cost-effective in many situations
  - Disease triggered early harvest
  - Depopulation in MA`s
  - Maintaining Disease Frontiers
  - Effective vaccines, improved genetics and functional feed
- Economic models are useful as support in decision making
  - "Oracle models" do not exist!
- Many stakeholders
  - Different disease situations between companies
  - Different levels
  - Who pays the cost and who take the benefit!
- We should look for optimal use of scarce resources!
- In each of the alternative uses



## Thank you!

A