Next-generation vaccine development options

Mia C. Hikke

PD TriNation, oct 2016

Fish vaccines classic vs. alternative technologies

- Classic vaccination → inactivated virus vaccines
 - IPNV
 - SPDV
- Requires large scale virus production
 - Problematic for e.g. PRV, PMCV
- Alternative technologies
 - Subunit vaccines
 - nucleic acid based vaccines
 - DNA vaccine
 - DNA replicon vaccines
 - RNA vaccine

Inactivated virus vaccine

A SPDV virus example

Wild type SPDV particle

Immunity;
Memory generation → Protected upon second encounter

The vaccine: Inactivated SPDV particles

Immunity;
Memory generation → Protected upon

first encounter

Subunit vaccination

A SPDV virus example

DNA vaccination

- Antigen expression in the fish
- DNA plasmid directly expresses the antigens of interest
- Positive examples
 - SPDV
 - VHSV
 - IHNV
- Immune responses are provoked by antigen exposure

DNA SPDV replicons

Structural genes of SPDV can be replaced by a gene of interest, e.g.

- ISAV
- PRV

DNA SPDV replicons

- RNA launched from DNA plasmid
- RNA replication provokes immune responses
- Antigen expression inside the fish
- Expression of antigen provokes immune responses

DNA SPDV replicons

DNA SPDV replicons

Example 1 - Vaccination against SPDV

DNA SPDV replicons

Example 1 - vaccination against SPDV

SAV-induced mortality

Conclusion: DNA replicon vaccination against SPDV is effective, but only when both major structural proteins are present

DNA SPDV replicons

vaccination against SPDV

Expression of the structural proteins at the cell surface is important for induction of a good immune response

DNA SPDV replicons

Example 2 - vaccination against ISAV

SPDV DNA replicon expressing the HE gene of ISAV

[Wolf et. al, 2012, Vaccine]

Vaccines based on nucleic acid

- DNA plasmids raise some regulatory/legislation hurdles, based on
 - the theoredical possibility of DNA integrating into fish genome
 - bioactive plasmids into nature
- Solution: Replacement of DNA by RNA
- But RNA is unstable and would need to be protected.
 Doable?

Harrisvaccines is now part of MSD Animal Health

Replicon particle (RP) vaccine based on Venezuelan equine encephalitis virus

SPDV Replicon particles (RP)

a potential vaccine against other fish pathogens

Final remarks

- New technology for fish vaccines needed to develop more virus vaccines in the future
- Several new vaccine technologies developed for other species work in fish after "fish adjustments"
- Many of the new technologies have implementation hurdles in Europe due to "outdated" GMO/gentechnology legistation.
- In Norway the Norwegian Biotechnology Advisory board is adressing the legistations on governmental level.

Open meeting in Oslo scheduled November 14th 2016

Acknowledgements

Wageningen University

- Gorben Pijlman
- Just Vlak
- Corinne Geertser .a

MSD Animal Health

- Sjo Koum rs
- Stephane
- Luc Grisez
- Petter Frost
- Kjartan
 Hodneland

Jor vegian School
of Veterinary
Science

- Espen Rimstad
- Stine Braaen