The Effect of Dietary Lipids on the Pathology of Salmon Pancreas Disease

Tharangani K. Herath ¹; Kim D. Thompson ¹; Philip Lyons ¹; Jomer Bo Lucanas ¹; Sandra Adams ¹; J. Gordon Bell ¹; Jamie Walton ^{1,2}; John Tinsley ² and Randolph H. Richards ¹

¹Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK ²BioMar Ltd., North Shore Road, Grangemouth Docks, Grangemouth. Scotland, UK

Background

- The application of the correct dietary profile is important in maintaining health and welfare in aquaculture
- Previous studies indicated that PD was a nutritional defect associated with the vitamin E-selenium deficiency (Ferguson *et al.*, 1986) and deficiency of these two nutrients may be important in the pathogenesis of the PD condition (Bell *et al.*, 1987).
- More recently it was suggested that oxidative stress/lipid peroxidation may induce the pathology in SAV infections (Ferguson 2006).

- The role of PUFA's in managing fish health is a growing area of research interest
- Alteration of PUFA (n-6/n-3) effects fatty acid composition of fish tissues as well the fish immune response
- However, this is has not been fully explored

Aim

To assess whether the application of

- low or high lipid with low or high antioxidant (Experiment 1)
- differing PUFA ratios (Experiment 2)

in the diet would help reduce the severity of lesions and improve the recovery of the fish from SAV 1 infection

Experimental Design

Rainbow trout were fed with **five different diets** (1 control {E} and 4 experimental {A-D}) for 6 weeks

Dietary information

	Lipid level	Lipid (%) Antioxidant level
E	Control	22%	Low antioxidants
А	Low Lipid	18%	Low antioxidants
В	Low Lipid	18%	High antioxidants
С	High Lipid	26%	Low antioxidants
D	High Lipid	26%	High antioxidants

Experimental fish were reared in triplicate tanks and controls

were in a single tank.

Fish were infected i.p. with SAV 1

Samples were obtained at Day 0 and 5, 15, 30 d.p.i.

SAMPLE COLLECTION for both experiments

- Weight/Length
- Tissues for histopathology
 -Pancreas, Heart, Skeletal, muscle, Kidney, Liver, Spleen, Gill
- Tissues for viral load study
- Tissues for total fatty acids, TBAR analysis
- Serum for CPK, Vit E, Se analysis

- Tissues embedded in paraffin wax sectioned at 5μ m and stained with H&E
- Tissue damage was measured according to a scoring system developed by Christie *et al* 2007; modified by Herath, 2010.
- Scoring system (blind scoring) Degeneration Inflammation

0-3 0 Normal 1 Mild 2 Moderate 3 Severe

Thermal Growth Coefficient

Diet	Lipid level	Antioxidant level
E	Control	Low antioxidants
Α	Low Lipid	Low antioxidants
В	Low Lipid	High antioxidants
С	High Lipid	Low antioxidants
D	High Lipid	High antioxidants

Results Histopathology findings - pancreas

Histopathology findings – Heart

Histopathology findings – Skeletal muscle

Mean lesion score for degeneration (0-3)

Mean lesion score for inflammation (0-3)

Discussion

Experiment 1

- No mortalities were recorded throughout the period of the experiment.
- Fish fed with low, or high lipid or diets supplemented with low, or high antioxidant all showed evidence of infection with PD.

• Fish fed with different diets have similar patterns of pathology.

Discussion

Experiment 1

- Increasing antioxidant concentrations and altering high and low fat in the diet could be a solution ?
 - Need further information
 - Role of lipid peroxidation in viral pathogenesis

Experimental Design

- Rainbow Trout fed with two different diets
 - High n-3 PUFA
 - Low n-3 PUFA for 4 weeks
- 28 fish from each tank were challenged with SAV-1 and transferred into challenge facility
- Two additional dietary regimes introduced (in both control and challenge)
 - High-Low n-3 PUFA
 - Low-High n-3 PUFA
- All regimes performed in triplicate
- Sampled 2 fish/tank for pathology at 0, 5, 15, 30, 45 d.p.i

Similar sampling regime to Experiment 1

Dietary information

	Diet H	Diet L
Fatty Acid	%	%
Total saturated	25.53	14.24
Total monounsaturated	43.51	54.28
Total n-6 PUFA	7.29	16.55
Total n-3 PUFA	22.43	14.44
16:2;16:3;16:4	1.23	0.49
Total PUFA	30.95	31.48
Total	100	100

Thermal Growth Coefficient

Results

Tissue Degeneration Pancreas Heart 3 3 2.5 2.5 Mean Lesion Score (Degeneration) **Mean Lesion Score** (Degeneration) 2 2 1.5 1.5 1 1 0.5 0.5 0 0 HH4H12H30H45 1515130145 H12H12H29H45 HH4H12H20H45 1515130145 H1+1+1+1-2+1-45 1451451301445 1451151301445 Diet/Time Point Diet/Time point

H/H	High to high
L/L	Low to low
L/H	Low to high
L/L	High to low

Results

Discussion

Experiment 2

- Consistent regimes appear to perform better
- HH regime (high fish oil) group had significantly lower inflammation levels
- Switched regimes-no effect ?
- Extension of pre-feeding and trial periods ?
- Is pathology scoring sensitive enough to detect any differences between the diets ?

Thank you!