

Mark Braceland, Ralph Bickerdike, David Cockerill, Marian McLoughlin, Richard Burchmore, Phillip Cash, Mark McLaughlin, Peter David Eckersall, John Tinsley

Background

Salmonid Alphavirus (SAV)

(Kibenge et. al., 2012)

- Background
- Economic impact

Larsson et. al., 2011

Current Diagnostic Tools and Associated Problems

- Virus specific RT-PCR and histopathology: Destructive
- Pathogen specific antibody detection: Slower synthesis of Igs in fish (temp. dependent), difficult to quantify disease stage

Aims

- To characterize the changing serum proteome of Atlantic salmon during PD
- Attain a clearer understanding why these changes occur (pathology or immune response)
- Use within the field

Establish humoral Biomarkers of PD

Why Proteomics?

- Functional molecules are being studied i.e. 'end product'
- Post translational modifications that cannot be predicted from linear genetics
- Strong gene expression = abundant mRNA

(does not necessarily correspond to abundant protein, active nor that this protein shall be secreted)

Experimental Model

Sampling: Week 0, W2, W3, W4*, W5, W6, W8, W10, W12

9 fish sampled at each time point

*W4 24 fish

Blood and tissues taken

Proteomics

- Pools made from each sampling point using each tank (Cohabitation trial)
- Gels ran in triplicate
- 2DE carried out: pl 3-10 and SDS PAGE (BioRad)
- SameSpots power value of >0.8 and ANNOVA significance score of <0.05 to ensure reproducibility
- Protein spots identified via ion trap mass-spectrometry and comparison to the MASCOT protein database

WO

Progenesis Same Spots (Nonlinear dynamics, Newcastle U.K.)

In total >800 spots were identified:

-Statistical analysis + Manually reviewed = 72 differentially expressed (Power >0.8, ANNOVA <0.05)

Example shown spot 473 (Fructose-bisphosphate aldolase):

Novel proteomic analysis via ArrayStar

- Arraystar heat map hierarchical clustering of spot intensities
- K-means un-centred Pearson
- Shows relationship between spots and proteome as a whole throughout PD,
- No need for manually looking through each expression profile

Can we differentiate between biomarkers of tissue pathology and immune response?

Histopathology

Pancreatic lesions were classified as:

Score	Description
0	Normal appearance.
1	Focal pancreatic acinar cell necrosis
2	Significant multifocal necrosis/atrophy of pancreatic
	acinar tissue, plus some remnants remaining.
3	Total absence of pancreatic acinar tissue
R	Recovery pancreas

Heart lesions were classified as:

Score	Description
0	Normal appearance.
1	Focal myocardial degeneration \pm inflammation [<50]
	fibres affected]
2	Multifocal myocardial degeneration ± inflammation
	[50-100 fibres affected]
3	Severe diffuse myocardial degeneration \pm inflammation
	[>100 fibres affected]
R	Repair

Red and white skeletal muscle lesions were classified as:

Score	Description
0	Normal appearance.
1	Focal myocytic degeneration ± inflammation
2	Multifocal myocytic degeneration ± inflammation
3	Severe diffuse myocytic degeneration ±
	inflammation
R	Repair

(McLoughlin et al., 2006, Christie et al. 2007)

Histopathology

Weeks post cohabitant challenge

WM= White muscle, RM= Red muscle, HT= Heart. Pan= Pancreas

- Statistical Analysis Software (SAS) regression GLM analysis of protein expression profiles (SameSpots) and their relationship with tissue pathologies
- A number of advantages
- When gene ontology is not clearly defined and does not take into account multiple functions
- May give insight into new isoforms of specific tissue injury (although proteomics, of this type, cannot definitively prove this but may lead to further work)

479

440

602

Glyceraldehyde-3-phosphatedehydrogenase(O42259)

SerotransferrinII+Serumalbumin2precursor(TRF2SALSA+ABONS2)

Alpha-2enolase-1(ABONS1)

	U Glasgow								
Spot #	<u>Identification</u>	Probability Histo.				<u>Fold</u>	Estimated pI	Estimated MW	
		Pancreas	<u>Heart</u>	Red Muscle	White Muscle			<u>(kD)</u>	
494	Glyceraldehyde3-phosphate dehydrogenase(Q90ZF1)	0.271	0.8078	0.132	0.2332	15.3	8.2		33
360	Alpha-2enolase-1(Q9DDG6)	0.1997	0.7136	0.047	0.0002	15.3	7.77	,	41
317	Enolase1,(Alpha)(Q6GMI7)	0.1688	0.6918	0.0963	0.0042	7.6	7.94	ı	45
628	Triosephosphateisomerase(Q70I40)	0.0082	0.3003	0.0001	0.0047	3.9	7.85	5	23
473	Fructose-bisphosphate aldolase(Q4RVI9)	0.1771	0.8644	0.0292	0.0336	16.9	8.81	L	34
150	Hemopexin-likeprotein(P79825)	0.872	0.3269	0.7833	0.804	9.6	4.22	2	68
326	Alpha-2enolase-1(Q9DDG6)	0.1489	0.6904	0.0853	0.0061	5.6	7.78	3	45
391	Muscle-typecreatinekinaseCKM1(Q8JH39)	0.0462	0.7088	0.004	0.0009	5.1	7.35	5	38
386	Aldolase(Q804Y1)	0.1753	0.911	0.0229	0.0204	13.8	8.72	2	38
393	Glyceraldehyde3-phosphate dehydrogenase(O42259)	0.1131	0.9435	0.0028	0.0002	15.7	8.79)	38

628	Triosephosphateisomerase(Q70I40)	0.0082	0.3003	0.0001	0.0047	3.9	7.85	23
473	Fructose-bisphosphate aldolase(Q4RVI9)	0.1771	0.8644	0.0292	0.0336	16.9	8.81	34
150	Hemopexin-likeprotein(P79825)	0.872	0.3269	0.7833	0.804	9.6	4.22	68
326	Alpha-2enolase-1(Q9DDG6)	0.1489	0.6904	0.0853	0.0061	5.6	7.78	45
391	Muscle-typecreatinekinaseCKM1(Q8JH39)	0.0462	0.7088	0.004	0.0009	5.1	7.35	38
386	Aldolase(Q804Y1)	0.1753	0.911	0.0229	0.0204	13.8	8.72	38
393	Glyceraldehyde3-phosphate dehydrogenase(O42259)	0.1131	0.9435	0.0028	0.0002	15.7	8.79	38
623	Triosephosphateisomerase+ Ig light chain(Q70I40+AAG18369)	0.1508	0.5987	0.0971	0.0068	3.4	8.57	23
500	AldolaseA(Q8JH72)	0.1836	0.7625	0.039	0.0693	15.4	8.58	32
548	serumalbumin1(P21848)	0.381	0.1562	0.7586	0.2887	7	6.29	27
493	Glyceraldehyde3-phosphatedehydrogenase(O42259)	0.2358	0.7868	0.0975	0.1501	11.6	8.18	33
477	Fructose-bisphosphate aldolase-like isotype(Q8JH71)	0.1181	0.7005	0.0143	0.0255	10.1	8.7	33

393	Glyceraldehyde3-phosphate dehydrogenase(O42259)	0.1131	0.9435	0.0028	0.0002	15.7	8.79	38
623	Triosephosphateisomerase+ Ig light chain(Q70I40+AAG18369)	0.1508	0.5987	0.0971	0.0068	3.4	8.57	23
500	AldolaseA(Q8JH72)	0.1836	0.7625	0.039	0.0693	15.4	8.58	32
548	serumalbumin1(P21848)	0.381	0.1562	0.7586	0.2887	7	6.29	27
493	Glyceraldehyde3-phosphatedehydrogenase(O42259)	0.2358	0.7868	0.0975	0.1501	11.6	8.18	33
477	Fructose-bisphosphate aldolase-like isotype(Q8JH71)	0.1181	0.7005	0.0143	0.0255	10.1	8.7	33
687	SerotransferrinII(TRF2SALSA)	0.1577	0.0552	0.8437	0.5952	4.6	7.93	18

0.0972

0.0534

0.0931

0.4788

0.8544

0.8462

0.0307

0.0097

0.0318

0.1032

0.0006

0.0005

7.1

4.5

3.6

8.43

6.64

8.63

33

36

24

Proteomic results split into 2 categories

Those which alter in serum abundance due to pathology

Creatine kinase (Spot 391)

Those which alter as part of humoral immune response

Hemopexin-like protein (Spot 150)

Validation

Western Blots

- 1D: separation of protein by mass SDS-PAGE, transfer to Nitro-cellulose (NC)
- 2d: Separation of protein by pl by isoelectric focusing then mass SDS-PAGE, transfer to NC
- Anti-GADPH: Primary antibody = (Ms) @ 1:500 dil.
 Secondary Ab = Dnk to Ms HRP @ 1: 5000

GADPH 1D Western Blot

Week 0 Pool Week 2 Pool Week 3 Pool Week 4 Pool Week 5 Pool Week 6 Pool Week 8 Pool Week 10 Pool Week 12 Pool

1 2 3 4 5 6 7 8 9

1 = W0, 2 = W2 pc, 3 = W3 pc, 4 = W4 pc, 5 = W5 pc, 6 = W6 pc, 7 = W8 pc, 8 = W10 pc, 9 = W12 pc

Conclusion

- Histopathology results from this cohabitation trial followed the sequential pattern of tissue damage characteristic of PD
- Whilst proteomics may not be a front line diagnostic tool it is extremely useful in identifying possible biomarkers which after assay development may be used in the field
- This dual approach has given new insight into the effects of pathology on the serum proteome

Acknowledgements

- All my supervisors (academic and industrial)
- Marian McLoughlin for carrying out all the histopathology
- Richard Burchmore, University of Glasgow
- Phillip Cash, University of Aberdeen
- Biomar and Marine Harvest Scotland for their all their support
- The BBSRC (Case) and Biosciences KTN are gratefully thanked for their support of this project